Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana.
نویسندگان
چکیده
In recent years a variety of quantitative proteomics techniques have been developed, allowing characterization of changes in protein abundance in a variety of organisms under various biological conditions. Because it allows excellent control for error at all steps in sample preparation and analysis, full metabolic labeling using (15)N has emerged as an important strategy for quantitative proteomics, having been applied in a variety of organisms from yeast to Arabidopsis and even rats. However, challenges associated with complete replacement of (14)N with (15)N can make its application in many complex eukaryotic systems impractical on a routine basis. Extending a concept proposed by Whitelegge et al. (Whitelegge, J. P., Katz, J. E., Pihakari, K. A., Hale, R., Aguilera, R., Gomez, S. M., Faull, K. F., Vavilin, D., and Vermaas, W. (2004) Subtle modification of isotope ratio proteomics; an integrated strategy for expression proteomics. Phytochemistry 65, 1507-1515), we investigate an alternative strategy for quantitative proteomics that relies upon the subtle changes in isotopic envelope shape that result from partial metabolic labeling to compare relative abundances of labeled and unlabeled peptides in complex mixtures. We present a novel algorithm for the automated quantitative analysis of partial incorporation samples via LC-MS. We then compare the performance of partial metabolic labeling with traditional full metabolic labeling for quantification of controlled mixtures of labeled and unlabeled Arabidopsis peptides. Finally we evaluate the performance of each technique for comparison of light- versus dark-grown Arabidopsis with respect to reproducibility and numbers of peptide and protein identifications under more realistic experimental conditions. Overall full metabolic labeling and partial metabolic labeling prove to be comparable with respect to dynamic range, accuracy, and reproducibility, although partial metabolic labeling consistently allows quantification of a higher percentage of peptide observations across the dynamic range. This difference is especially pronounced at extreme ratios. Ultimately both full metabolic labeling and partial metabolic labeling prove to be well suited for quantitative proteomics characterization.
منابع مشابه
Extending SILAC to proteomics of plant cell lines.
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) is a widespread method for metabolic labeling of cells and tissues in quantitative proteomics; however, incomplete incorporation of the label has so far restricted its wider use in plants. Here, we argue that differential labeling by two different versions of the labeled amino acids renders SILAC fully applicable to dark-grown plant...
متن کاملStable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry.
Quantitative analysis of protein expression is an important tool for the examination of complex biological systems. Albeit its importance, quantitative proteomics is still a challenging task because of the high dynamic range of protein amounts in the cell and the variation in the physical properties of proteins. Stable isotope labeling by amino acids in cell culture (SILAC) has been successfull...
متن کاملDifferential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملYeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction
SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular & cellular proteomics : MCP
 
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2007